摘要:To address the drug-resistance of bacterial pathogens without imposing a selective survival pressure, virulence and biofilms are highly attractive targets. Here, we show that terrein, which was isolated from Aspergillus terreus, reduced virulence factors (elastase, pyocyanin, and rhamnolipid) and biofilm formation via antagonizing quorum sensing (QS) receptors without affecting Pseudomonas aeruginosa cell growth. Additionally, the effects of terrein on the production of QS signaling molecules and expression of QS-related genes were verified. Interestingly, terrein also reduced intracellular 3,5-cyclic diguanylic acid (c-di-GMP) levels by decreasing the activity of a diguanylate cyclase (DGC). Importantly, the inhibition of c-di-GMP levels by terrein was reversed by exogenous QS ligands, suggesting a regulation of c-di-GMP levels by QS; this regulation was confirmed using P. aeruginosa QS mutants. This is the first report to demonstrate a connection between QS signaling and c-di-GMP metabolism in P. aeruginosa, and terrein was identified as the first dual inhibitor of QS and c-di-GMP signaling.