摘要:/g with methyl acrylate ratio increasing from E1D9 to E9D1. Their adsorption capacities for TC and Cu(II) could reach 0.243 and 0.453 mmol/g, respectively. The adsorption isotherms of TC onto MMARs transformed from heterogeneous adsorption to monolayer-type adsorption with DVB monomer ratio in resin matrix decrease, suggesting the dominant physical adsorption between TC and benzene rings. TC adsorption capacity onto E9D1 was higher than that onto E7D3 when the equilibrium concentration of TC exceeded 0.043 mmol/L because the electrostatic interaction between negatively charged groups of TC and protonated amines of adsorbents could compensate for the capacity loss resulting from BET surface area decrease. In the binary system, the electrostatic interaction between negatively charged TC-Cu(II) complex and protonated amines of adsorbents was responsible for the synergistic adsorption onto E7D3 and E9D1. The XPS spectra of magnetic resins before and after adsorption were characterized to prove the probable adsorption mechanisms. This work provides alternative adsorbent for the efficient treatment of multiple pollution with different concentrations of organic micropollutants and heavy metal ions.