摘要:When we touch an object, the skin copies its surface shape/texture, and this deformation pattern shifts according to the objects movement. This shift pattern directly encodes spatio-temporal "motion" information of the event, and has been detected in other modalities (e.g., inter-aural time differences for audition and first-order motion for vision). Since previous studies suggested that mechanoreceptor-afferent channels with small receptive field and slow temporal characteristics contribute to tactile motion perception, we tried to tap the spatio-temporal processor using low-frequency sine-waves as primitive probes in our previous study. However, we found that asynchrony of sine-wave pair presented on adjacent fingers was difficult to detect. Here, to take advantage of the small receptive field, we investigated within-finger motion and found above threshold performance when observers touched localized sine-wave stimuli with one finger. Though observers could not perceptually discriminate rightward from leftward motion, the adaptation occurred in a direction-sensitive way: the motion/asynchronous detection was impaired by adapting to asynchronous stimuli moving in the same direction. These findings are consistent with a possibility that human can directly encode short-range spatio-temporal patterns of skin deformation by using phase-shifted low-frequency components, in addition to detecting short- and long-range motion using energy shifts of high-frequency components.