摘要:Spin-orbit torque has attracted considerable attention as a means to overcome limits of devices based on spin-transfer torque. However, a small magnetic field that is collinear to the current flow must be applied to break symmetry and induce deterministic current-induced magnetization switching. Recently, a junction utilizing interlayer coupling mediated by a Ru spacer layer between two CoFe layers was designed for symmetry breaking and exhibited current-induced magnetization switching without a magnetic field. Here, we demonstrate zero-field current-induced switching of the perpendicular magnetization of a Co layer that is indirectly coupled with a CoFe layer via a Ta spacer. The weak interlayer coupling exhibited by Ta allows the layer thickness to be relatively small (≈0.5 nm), enabling appropriate interlayer coupling to induce spin-orbit torque for current-induced magnetic switching. External magnetic field effects on switching characteristics show that the current switching process is quite stable against external environments.