首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Multi-objective Optimization for Materials Discovery via Adaptive Design
  • 本地全文:下载
  • 作者:Abhijith M. Gopakumar ; Prasanna V. Balachandran ; Dezhen Xue
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2018
  • 卷号:8
  • 期号:1
  • 页码:3738
  • DOI:10.1038/s41598-018-21936-3
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:AX phases obtained from density functional theory calculations, and a computational data set of 704 piezoelectric compounds. We show that the Maximin and Centroid design strategies, based on value of information criteria, are more efficient in determining points on the PF from the data than random selection, pure exploitation of the surrogate model prediction or pure exploration by maximum uncertainty from the learning model. Although the datasets varied in size and source, the Maximin algorithm showed superior performance across all the data sets, particularly when the accuracy of the machine learning model fits were not high, emphasizing that the design appears to be quite forgiving of relatively poor surrogate models.
国家哲学社会科学文献中心版权所有