摘要:We investigate the ground state and excitations of finite-size Heisenberg loops doped with one hole as the simplest example to illustrate the nature of strong correlations in a doped Mott insulator. We show that the doped hole form a peculiar long-range entanglement with the surrounding spins as revealed by inspecting the mutual correlations between the charge and spin using exact diagonalization (ED). In particular, the one-hole ground state acquires a series of non-trivial total momenta depending on the ratio J/t (J and t denote the superexchange coupling and hopping integral, respectively), which gives rise to distinct quantum phases separated by critical points (CPs). Interestingly the novel total momentum and correlations completely disappear once a singular sign structure is turned off in the t-J model, indicating the latter is the true original source for strong correlation via many-body quantum interference. We emphasize that the novelties discovered here are not restricted to the one-dimensional loop. We introduce a new charge-spin mutual entanglement that can well characterize these exotic properties, which can be then easily generalized to more realistic situations like two dimensions.