首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Glucose repression can be alleviated by reducing glucose phosphorylation rate in Saccharomyces cerevisiae
  • 本地全文:下载
  • 作者:Stephan Lane ; Haiqing Xu ; Eun Joong Oh
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2018
  • 卷号:8
  • 期号:1
  • 页码:2613
  • DOI:10.1038/s41598-018-20804-4
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Microorganisms commonly exhibit preferential glucose consumption and diauxic growth when cultured in mixtures of glucose and other sugars. Although various genetic perturbations have alleviated the effects of glucose repression on consumption of specific sugars, a broadly applicable mechanism remains unknown. Here, we report that a reduction in the rate of glucose phosphorylation alleviates the effects of glucose repression in Saccharomyces cerevisiae. Through adaptive evolution under a mixture of xylose and the glucose analog 2-deoxyglucose, we isolated a mutant strain capable of simultaneously consuming glucose and xylose. Genome sequencing of the evolved mutant followed by CRISPR/Cas9-based reverse engineering revealed that mutations in the glucose phosphorylating enzymes (Hxk1, Hxk2, Glk1) were sufficient to confer simultaneous glucose and xylose utilization. We then found that varying hexokinase expression with an inducible promoter led to the simultaneous utilization of glucose and xylose. Interestingly, no mutations in sugar transporters occurred during the evolution, and no specific transporter played an indispensable role in simultaneous sugar utilization. Additionally, we demonstrated that slowing glucose consumption also enabled simultaneous utilization of glucose and galactose. These results suggest that the rate of intracellular glucose phosphorylation is a decisive factor for metabolic regulations of mixed sugars.
国家哲学社会科学文献中心版权所有