首页    期刊浏览 2024年07月05日 星期五
登录注册

文章基本信息

  • 标题:Electronic Structure and Band Gap Engineering of Two-Dimensional Octagon-Nitrogene
  • 本地全文:下载
  • 作者:Wanxing Lin ; Jiesen Li ; Weiliang Wang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2018
  • 卷号:8
  • 期号:1
  • 页码:1674
  • DOI:10.1038/s41598-018-19496-7
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:A new phase of nitrogen with octagon structure has been predicted in our previous study, which we referred to as octagon-nitrogene (ON). In this work, we make further investigations of its stability and electronic structures. The phonon dispersion has no imaginary phonon modes, which indicates that ON is dynamically stable. Using ab initio molecular dynamic simulations, this structure is found to be stable up to room temperature and possibly higher, and ripples that are similar to that of graphene are formed on the ON sheet. Based on the density functional theory calculation, we find that single layer ON is a two-dimension wide gap semiconductor with an indirect band gap of 4.7 eV. This gap can be decreased by stacking due to the interlayer interactions. Biaxial tensile strain and perpendicular electric field can greatly influence the band structure of ON, in which the gap decreases and eventually closes as the biaxial tensile strain or the perpendicular electric field increases. In other words, both biaxial tensile strain and a perpendicular electric field can drive the insulator-to-metal transition, and thus can be used to engineer the band gap of ON. From our results, we see that ON has potential applications in many fields, including electronics, semiconductors, optics and spintronics.
国家哲学社会科学文献中心版权所有