摘要:Monitoring individual proteins in solution while simultaneously obtaining tertiary and quaternary structural information is challenging. In this study, translocation of the vascular endothelial growth factor (VEGF) protein through a solid-state nanopore (ssNP) produces distinct ion-current blockade amplitude levels and durations likely corresponding to monomer, dimer, and higher oligomeric states. Upon changing from a non-reducing to a reducing condition, ion-current blockage events from the monomeric state dominate, consistent with the expected reduction of the two inter-chain VEGF disulfide bonds. Cleavage by plasmin and application of either a positive or a negative NP bias results in nanopore signals corresponding either to the VEGF receptor recognition domain or to the heparin binding domain, accordingly. Interestingly, multi-level analysis of VEGF events reveals how individual domains affect their translocation pattern. Our study shows that careful characterization of ssNP results elucidates real-time structural information about the protein, thereby complementing classical techniques for structural analysis of proteins in solution with the added advantage of quantitative single-molecule resolution of native proteins.