首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:Fc-modified exenatide-loaded nanoparticles for oral delivery to improve hypoglycemic effects in mice
  • 本地全文:下载
  • 作者:Yanan Shi ; Xinfeng Sun ; Liping Zhang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2018
  • 卷号:8
  • 期号:1
  • 页码:726
  • DOI:10.1038/s41598-018-19170-y
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:To improve the oral efficiency of exenatide, we prepared polyethylene glycol-poly(lactic-co-glycolic acid) (PEG-PLGA) NPs modified with Fc (NPs-Fc) for exenatide oral delivery. Exenatide was encapsulated into the NPs by the w/o/w emulsion-solvent evaporation method. The particle size of the NPs-Fc was approximately 30 nm larger than that of the unmodified NPs with polydispersity indices in a narrow range (PDIs; PDI < 0.3) as detected by DLS, and the highest encapsulation efficiency of exenatide in the NPs was greater than 80%. Fc-conjugated NPs permeated Caco-2 cells faster and to a greater extent compared to unmodified NPs, as verified by CLSM and flow cytometry. Hypoglycemic effect studies demonstrated that oral administration of exenatide-loaded PEG-PLGA NPs modified by an Fc group extended the hypoglycemic effects compared with s.c. injection of the exenatide solution. Fluorescence-labeled NPs were used to investigate the effects of Fc targeting, and the results demonstrated that the NPs-Fc stayed in the gastrointestinal tract for a longer time in comparison with the unmodified NPs, as shown by the whole-body fluorescence images and fluorescence images of the dissected organs detected by in vivo imaging in live mice. Therefore, Fc-targeted nano-delivery systems show great promise for oral peptide/protein drug delivery.
国家哲学社会科学文献中心版权所有