首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Closed-loop control of trunk posture improves locomotion through the regulation of leg proprioceptive feedback after spinal cord injury
  • 本地全文:下载
  • 作者:Eduardo Martin Moraud ; Joachim von Zitzewitz ; Jenifer Miehlbradt
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2018
  • 卷号:8
  • 期号:1
  • 页码:76
  • DOI:10.1038/s41598-017-18293-y
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:After spinal cord injury (SCI), sensory feedback circuits critically contribute to leg motor execution. Compelled by the importance to engage these circuits during gait rehabilitation, assistive robotics and training protocols have primarily focused on guiding leg movements to reinforce sensory feedback. Despite the importance of trunk postural dynamics on gait and balance, trunk assistance has comparatively received little attention. Typically, trunk movements are either constrained within bodyweight support systems, or manually adjusted by therapists. Here, we show that real-time control of trunk posture re-established dynamic balance amongst bilateral proprioceptive feedback circuits, and thereby restored left-right symmetry, loading and stepping consistency in rats with severe SCI. We developed a robotic system that adjusts mediolateral trunk posture during locomotion. This system uncovered robust relationships between trunk orientation and the modulation of bilateral leg kinematics and muscle activity. Computer simulations suggested that these modulations emerged from corrections in the balance between flexor- and extensor-related proprioceptive feedback. We leveraged this knowledge to engineer control policies that regulate trunk orientation and postural sway in real-time. This dynamical postural interface immediately improved stepping quality in all rats regardless of broad differences in deficits. These results emphasize the importance of trunk regulation to optimize performance during rehabilitation.
国家哲学社会科学文献中心版权所有