首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:MicroRNA-365 regulates IL-1β-induced catabolic factor expression by targeting HIF-2α in primary chondrocytes
  • 本地全文:下载
  • 作者:Hyun Sook Hwang ; Su Jin Park ; Mi Hyun Lee
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • 页码:17889
  • DOI:10.1038/s41598-017-18059-6
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Endothelial Per-Arnt-Sim domain protein-1/hypoxia-inducible factor-2α (EPAS-1/ HIF-2α) is a catabolic transcription factor that regulates osteoarthritis (OA)-related cartilage destruction. Here, we examined whether microRNA-365 (miR-365) affects interleukin (IL)-1β-induced expression of catabolic factors in chondrocytes via regulation of HIF-2α. MiR-365 levels were significantly decreased in human OA cartilage relative to normal cartilage. Overexpression of miR-365 significantly suppressed IL-1β-induced expression of HIF-2α in human articular chondrocytes. Pharmacological inhibition of various IL-1β-associated signaling pathways revealed mitogen-activated protein kinase and nuclear factor-κB as the primary pathways driving IL-1β-mediated decreases in miR-365 and subsequent increase in HIF-2α expression. Using a luciferase reporter assay encoding the 3' untranslated region (UTR) of human HIF-2α mRNA, we showed that overexpression of miR-365 significantly suppressed IL-1β-induced up-regulation of HIF-2α. AGO2 RNA-immunoprecipitation (IP) assay demonstrated that miR-365 and HIF-2α mRNA were enriched in the AGO2-IP fraction in miR-365-transfected primary chondrocytes compared to miR-con-transfected cells, indicating that HIF-2α is a target of miR-365. Furthermore, miR-365 overexpression significantly suppressed IL-1β-induced expression of catabolic factors, including cyclooxygenase-2 and matrix metalloproteinase-1, -3 and -13, in chondrocytes. In pellet culture of primary chondrocytes miR-365 prevented IL-1β-stimulated extracellular matrix loss and matrix metalloproteinase-13 expression. MiR-365 regulates IL-1β-stimulated catabolic effects in human chondrocytes by modulating HIF-2α expression.
国家哲学社会科学文献中心版权所有