首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Modeling and optimization of thermal conductivity and viscosity of MnFe2O4 nanofluid under magnetic field using an ANN
  • 本地全文:下载
  • 作者:Mohammad Amani ; Pouria Amani ; Alibakhsh Kasaeian
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • 页码:17369
  • DOI:10.1038/s41598-017-17444-5
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:This research investigates the applicability of an ANN and genetic algorithms for modeling and multiobjective optimization of the thermal conductivity and viscosity of water-based spinel-type MnFe2O4 nanofluid. Levenberg-Marquardt, quasi-Newton, and resilient backpropagation methods are employed to train the ANN. The support vector machine (SVM) method is also presented for comparative purposes. Experimental results demonstrate the efficacy of the developed ANN with the LM-BR training algorithm and the 3-10-10-2 structure for the prediction of the thermophysical properties of nanofluids in terms of the significantly superior accuracy compared to developing the correlation and employing SVM regression. Moreover, the genetic algorithm is implemented to determine the optimal conditions, i.e., maximum thermal conductivity and minimum nanofluid viscosity, based on the developed ANN.
国家哲学社会科学文献中心版权所有