首页    期刊浏览 2024年10月07日 星期一
登录注册

文章基本信息

  • 标题:Multipulse sodium magnetic resonance imaging for multicompartment quantification: Proof-of-concept
  • 本地全文:下载
  • 作者:Alina Gilles ; Armin M. Nagel ; Guillaume Madelin
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • 页码:17435
  • DOI:10.1038/s41598-017-17582-w
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:We present a feasibility study of sodium quantification in a multicompartment model of the brain using sodium (23Na) magnetic resonance imaging. The proposed method is based on a multipulse sequence acquisition and simulation at 7 T, which allows to differentiate the 23Na signals emanating from three compartments in human brain in vivo: intracellular (compartment 1), extracellular (compartment 2), and cerebrospinal fluid (compartment 3). The intracellular sodium concentration C 1 and the volume fractions α 1, α 2, and α 3 of all respective three brain compartments can be estimated. Simulations of the sodium spin 3/2 dynamics during a 15-pulse sequence were used to optimize the acquisition sequence by minimizing the correlation between the signal evolutions from the three compartments. The method was first tested on a three-compartment phantom as proof-of-concept. Average values of the 23Na quantifications in four healthy volunteer brains were α 1 = 0.54 ± 0.01, α 2 = 0.23 ± 0.01, α 3 = 1.03 ± 0.01, and C 1 = 23 ± 3 mM, which are comparable to the expected physiological values [Formula: see text] ∼ 0.6, [Formula: see text] ∼ 0.2, [Formula: see text] ∼ 1, and [Formula: see text] ∼ 10-30 mM. The proposed method may allow a quantitative assessment of the metabolic role of sodium ions in cellular processes and their malfunctions in brain in vivo.
国家哲学社会科学文献中心版权所有