首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Bullying incidences identification within an immersive environment using HD EEG-based analysis: A Swarm Decomposition and Deep Learning approach
  • 本地全文:下载
  • 作者:Vasileios Baltatzis ; Kyriaki-Margarita Bintsi ; Georgios K. Apostolidis
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • 页码:17292
  • DOI:10.1038/s41598-017-17562-0
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Bullying is an everlasting phenomenon and the first, yet difficult, step towards the solution is its detection. Conventional approaches for bullying incidence identification include questionnaires, conversations and psychological tests. Here, unlike the conventional approaches, two experiments are proposed that involve visual stimuli with cases of bullying- and non-bullying- related ones, set within a 2D (simple video preview) and a Virtual Reality (VR) (immersive video preview) context. In both experimental settings, brain activity is recorded using high density (HD) (256 channels) electroencephalogram (EEG), and analyzed to identify the bullying stimuli type (bullying/non-bullying) and context (2D/VR). The proposed classification analysis uses a convolutional neural network (CNN), applying deep learning on the oscillatory modes (OCMs) embedded within the raw HD EEG data. The extraction of OCMs from the HD EEG data is achieved with swarm decomposition (SWD), which efficiently accounts for the non-stationarity and noise contamination of the raw HD EEG data. Experimental results from 17 subjects indicate that the new SWD/CNN approach achieves high discrimination accuracy (AUC = 0.987 between bullying/non-bullying stimuli type; AUC = 0.975, between bullying/non-bullying stimuli type and 2D/VR context), paving the way for better understanding of how brain's responses could act as indicators of bullying experience within immersive environments.
国家哲学社会科学文献中心版权所有