首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Active-site plasticity revealed in the asymmetric dimer of AnPrx6 the 1-Cys peroxiredoxin and molecular chaperone from Anabaena sp. PCC 7120
  • 本地全文:下载
  • 作者:Yogesh Mishra ; Michael Hall ; Roland Locmelis
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • 页码:17151
  • DOI:10.1038/s41598-017-17044-3
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Peroxiredoxins (Prxs) are vital regulators of intracellular reactive oxygen species levels in all living organisms. Their activity depends on one or two catalytically active cysteine residues, the peroxidatic Cys (CP) and, if present, the resolving Cys (CR). A detailed catalytic cycle has been derived for typical 2-Cys Prxs, however, little is known about the catalytic cycle of 1-Cys Prxs. We have characterized Prx6 from the cyanobacterium Anabaena sp. strain PCC7120 (AnPrx6) and found that in addition to the expected peroxidase activity, AnPrx6 can act as a molecular chaperone in its dimeric state, contrary to other Prxs. The AnPrx6 crystal structure at 2.3 Å resolution reveals different active site conformations in each monomer of the asymmetric obligate homo-dimer. Molecular dynamic simulations support the observed structural plasticity. A FSH motif, conserved in 1-Cys Prxs, precedes the active site PxxxTxxCp signature and might contribute to the 1-Cys Prx reaction cycle.
国家哲学社会科学文献中心版权所有