摘要:In freshwater ecosystems, shifts in hydrological regimes have profound effects on reproductive output (R), along with vegetative biomass (V) and survival of plants. Because reproductive allocation (RA) is allometric, it remains unclear whether the observed variation of RA in response to water level variability is due to fixed patterns of development or plasticity in the developmental trajectories. Here, we investigated shifts in RA of a submerged macrophyte Vallisneria natans in response to water depth to test the hypothesis that allometric trajectories of RA are highly plastic. Plants were grown at three water depths (50, 100 and 150 cm) and measured after 26 weeks of growth. The relationships between R and V among treatments were compared. Deep water affected both biomass and number of fruits produced per plant, leading to less sexual reproduction. Plants in deep water started flowering at a smaller size and despite their small mature size, had a relatively high RA. Furthermore, these plants had a much lower log R-log V relationship than shallow- or intermediate-water plants. In conclusion, reproduction of V. natans is highly variable across water depth treatments, and variations in reproductive allometry represent different strategies under an important stress gradient for these freshwater angiosperms.