首页    期刊浏览 2024年09月21日 星期六
登录注册

文章基本信息

  • 标题:Investigating quantum metrology in noisy channels
  • 本地全文:下载
  • 作者:B. J. Falaye ; A. G. Adepoju ; A. S. Aliyu
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • 页码:16622
  • DOI:10.1038/s41598-017-16710-w
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Quantum entanglement lies at the heart of quantum information and quantum metrology. In quantum metrology, with a colossal amount of quantum Fisher information (QFI), entangled systems can be ameliorated to be a better resource scheme. However, noisy channels affect the QFI substantially. This research work seeks to investigate how QFI of N-qubit Greenberger-Horne-Zeilinger (GHZ) state is affected when subjected to decoherence channels: bit-phase flip (BPF) and generalize amplitude damping (GAD) channels, which can be induced experimentally. We determine the evolution under these channels, deduce the eigenvalues, and then derive the QFI. We found that when there is no interaction with the environment, the Heisenberg limit can be achieved via rotations along the z direction. It has been shown that in BPF channel, the maximal mean QFI of the N-qubit GHZ state ([Formula: see text]) dwindles as decoherence rate (p B ) increases due to flow of information from the system to the environment, until p B = 0.5, then revives to form a symmetric around p B = 0.5. Thus, p B > 0.5 leads to a situation where more noise yields more efficiency. We found that in GAD channel, at finite temperature, QFIs decay more rapidly than at zero temperature. Our results also reveal that QFI can be enhanced by adjusting the temperature of the environment.
国家哲学社会科学文献中心版权所有