首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Theoretical investigations on microwave Fano resonances in 3D-printable hollow dielectric resonators
  • 本地全文:下载
  • 作者:Eunsongyi Lee ; In Cheol Seo ; Hoon Yeub Jeong
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • 页码:16186
  • DOI:10.1038/s41598-017-16501-3
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:High-index dielectric structures have recently been studied intensively for Mie resonances at optical frequencies. These dielectric structures can enable extreme light manipulation, similar to that which has been achieved with plasmonic nanostructures. In the microwave region, dielectric resonators and metamaterials can be fabricated directly using 3D printing, which is advantageous for fabricating structurally complicated 3D geometries. It is therefore especially suitable for the fabrication of subwavelength structures. Here we report theoretical investigations on microwave Fano resonances in 3D-printable dielectric materials and structures. In particular, we propose and analyse 3D-printable, hollow, dielectric resonators with relatively low refractive indices, which exhibit sharp Fano resonances. We can control the interaction between bright and dark modes in a coupled dielectric particle pair by adjusting the inner-hole size, and thus we can increase the radiative Q factors further. We also find that Fano resonances in these hollow dielectric resonators are very sensitive to an index change in the surrounding medium, which could be useful for long-distance environmental sensing. New possibilities and opportunities are opening up with the rapid development of 3D-printing technologies. Our findings and the detailed investigations reported here can provide useful guidelines for future photonic devices based on 3D-printable materials and structures.
国家哲学社会科学文献中心版权所有