摘要:3D motion perception is of central importance to daily life. However, when tested in laboratory settings, sensitivity to 3D motion signals is found to be poor, leading to the view that heuristics and prior assumptions are critical for 3D motion perception. Here we explore an alternative: sensitivity to 3D motion signals is context-dependent and must be learned based on explicit visual feedback in novel environments. The need for action-contingent visual feedback is well-established in the developmental literature. For example, young kittens that are passively moved through an environment, but unable to move through it themselves, fail to develop accurate depth perception. We find that these principles also obtain in adult human perception. Observers that do not experience visual consequences of their actions fail to develop accurate 3D motion perception in a virtual reality environment, even after prolonged exposure. By contrast, observers that experience the consequences of their actions improve performance based on available sensory cues to 3D motion. Specifically, we find that observers learn to exploit the small motion parallax cues provided by head jitter. Our findings advance understanding of human 3D motion processing and form a foundation for future study of perception in virtual and natural 3D environments.