首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Bayesian Networks Analysis of Malocclusion Data
  • 本地全文:下载
  • 作者:Marco Scutari ; Pietro Auconi ; Guido Caldarelli
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • 页码:15236
  • DOI:10.1038/s41598-017-15293-w
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:In this paper we use Bayesian networks to determine and visualise the interactions among various Class III malocclusion maxillofacial features during growth and treatment. We start from a sample of 143 patients characterised through a series of a maximum of 21 different craniofacial features. We estimate a network model from these data and we test its consistency by verifying some commonly accepted hypotheses on the evolution of these disharmonies by means of Bayesian statistics. We show that untreated subjects develop different Class III craniofacial growth patterns as compared to patients submitted to orthodontic treatment with rapid maxillary expansion and facemask therapy. Among treated patients the CoA segment (the maxillary length) and the ANB angle (the antero-posterior relation of the maxilla to the mandible) seem to be the skeletal subspaces that receive the main effect of the treatment.
国家哲学社会科学文献中心版权所有