首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:Differential transcriptome regulation by 3,5-T2 and 3′,3,5-T3 in brain and liver uncovers novel roles for thyroid hormones in tilapia
  • 本地全文:下载
  • 作者:A. Olvera ; C. J. Martyniuk ; N. Buisine
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • 页码:15043
  • DOI:10.1038/s41598-017-14913-9
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Although 3,5,3'-triiodothyronine (T3) is considered to be the primary bioactive thyroid hormone (TH) due to its high affinity for TH nuclear receptors (TRs), new data suggest that 3,5-diiodothyronine (T2) can also regulate transcriptional networks. To determine the functional relevance of these bioactive THs, RNA-seq analysis was conducted in the cerebellum, thalamus-pituitary and liver of tilapia treated with equimolar doses of T2 or T3. We identified a total of 169, 154 and 2863 genes that were TH-responsive (FDR < 0.05) in the tilapia cerebellum, thalamus-pituitary and liver, respectively. Among these, 130, 96 and 349 genes were uniquely regulated by T3, whereas 22, 40 and 929 were exclusively regulated by T2 under our experimental paradigm. The expression profiles in response to TH treatment were tissue-specific, and the diversity of regulated genes also resulted in a variety of different pathways being affected by T2 and T3. T2 regulated gene networks associated with cell signalling and transcriptional pathways, while T3 regulated pathways related to cell signalling, the immune system, and lipid metabolism. Overall, the present work highlights the relevance of T2 as a key bioactive hormone, and reveals some of the different functional strategies that underpin TH pleiotropy.
国家哲学社会科学文献中心版权所有