摘要:Inference of tumor and edema areas from brain magnetic resonance imaging (MRI) data remains challenging owing to the complex structure of brain tumors, blurred boundaries, and external factors such as noise. To alleviate noise sensitivity and improve the stability of segmentation, an effective hybrid clustering algorithm combined with morphological operations is proposed for segmenting brain tumors in this paper. The main contributions of the paper are as follows: firstly, adaptive Wiener filtering is utilized for denoising, and morphological operations are used for removing nonbrain tissue, effectively reducing the method’s sensitivity to noise.