首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Cubic Formula Size Lower Bounds Based on Compositions with Majority
  • 本地全文:下载
  • 作者:Anna G{'a}l ; Avishay Tal ; Adrian Trejo Nu{~n}ez
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:124
  • 页码:1-13
  • DOI:10.4230/LIPIcs.ITCS.2019.35
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We define new functions based on the Andreev function and prove that they require n^{3}/polylog(n) formula size to compute. The functions we consider are generalizations of the Andreev function using compositions with the majority function. Our arguments apply to composing a hard function with any function that agrees with the majority function (or its negation) on the middle slices of the Boolean cube, as well as iterated compositions of such functions. As a consequence, we obtain n^{3}/polylog(n) lower bounds on the (non-monotone) formula size of an explicit monotone function by combining the monotone address function with the majority function.
  • 关键词:formula lower bounds; random restrictions; KRW conjecture; composition
国家哲学社会科学文献中心版权所有