首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Semi-Online Bipartite Matching
  • 本地全文:下载
  • 作者:Ravi Kumar ; Manish Purohit ; Aaron Schild
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:124
  • 页码:1-20
  • DOI:10.4230/LIPIcs.ITCS.2019.50
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In this paper we introduce the semi-online model that generalizes the classical online computational model. The semi-online model postulates that the unknown future has a predictable part and an adversarial part; these parts can be arbitrarily interleaved. An algorithm in this model operates as in the standard online model, i.e., makes an irrevocable decision at each step. We consider bipartite matching in the semi-online model. Our main contributions are competitive algorithms for this problem and a near-matching hardness bound. The competitive ratio of the algorithms nicely interpolates between the truly offline setting (i.e., no adversarial part) and the truly online setting (i.e., no predictable part).
  • 关键词:Semi-Online Algorithms; Bipartite Matching
国家哲学社会科学文献中心版权所有