首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:A New Approach to Multi-Party Peer-to-Peer Communication Complexity
  • 本地全文:下载
  • 作者:Adi Rosn ; Florent Urrutia
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:124
  • 页码:1-19
  • DOI:10.4230/LIPIcs.ITCS.2019.64
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We introduce new models and new information theoretic measures for the study of communication complexity in the natural peer-to-peer, multi-party, number-in-hand setting. We prove a number of properties of our new models and measures, and then, in order to exemplify their effectiveness, we use them to prove two lower bounds. The more elaborate one is a tight lower bound of Omega(kn) on the multi-party peer-to-peer randomized communication complexity of the k-player, n-bit function Disjointness, Disj_k^n. The other one is a tight lower bound of Omega(kn) on the multi-party peer-to-peer randomized communication complexity of the k-player, n-bit bitwise parity function, Par_k^n. Both lower bounds hold when n=Omega(k). The lower bound for Disj_k^n improves over the lower bound that can be inferred from the result of Braverman et al. (FOCS 2013), which was proved in the coordinator model and can yield a lower bound of Omega(kn/log k) in the peer-to-peer model. To the best of our knowledge, our lower bounds are the first tight (non-trivial) lower bounds on communication complexity in the natural peer-to-peer multi-party setting. In addition to the above results for communication complexity, we also prove, using the same tools, an Omega(n) lower bound on the number of random bits necessary for the (information theoretic) private computation of the function Disj_k^n.
  • 关键词:communication complexity; multi-party communication complexity; peer-to-peer communication complexity; information complexity; private computation
国家哲学社会科学文献中心版权所有