首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Multivariate Analysis of Orthogonal Range Searching and Graph Distances
  • 本地全文:下载
  • 作者:Karl Bringmann ; Thore Husfeldt ; Måns Magnusson
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:115
  • 页码:1-13
  • DOI:10.4230/LIPIcs.IPEC.2018.4
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We show that the eccentricities, diameter, radius, and Wiener index of an undirected n-vertex graph with nonnegative edge lengths can be computed in time O(n * binom{k+ceil[log n]}{k} * 2^k k^2 log n), where k is the treewidth of the graph. For every epsilon>0, this bound is n^{1+epsilon}exp O(k), which matches a hardness result of Abboud, Vassilevska Williams, and Wang (SODA 2015) and closes an open problem in the multivariate analysis of polynomial-time computation. To this end, we show that the analysis of an algorithm of Cabello and Knauer (Comp. Geom., 2009) in the regime of non-constant treewidth can be improved by revisiting the analysis of orthogonal range searching, improving bounds of the form log^d n to binom{d+ceil[log n]}{d}, as originally observed by Monier (J. Alg. 1980). We also investigate the parameterization by vertex cover number.
  • 关键词:Diameter; radius; Wiener index; orthogonal range searching; treewidth; vertex cover number
国家哲学社会科学文献中心版权所有