首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:The Parameterised Complexity of Computing the Maximum Modularity of a Graph
  • 本地全文:下载
  • 作者:Kitty Meeks ; Fiona Skerman
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2019
  • 卷号:115
  • 页码:1-14
  • DOI:10.4230/LIPIcs.IPEC.2018.9
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The maximum modularity of a graph is a parameter widely used to describe the level of clustering or community structure in a network. Determining the maximum modularity of a graph is known to be NP-complete in general, and in practice a range of heuristics are used to construct partitions of the vertex-set which give lower bounds on the maximum modularity but without any guarantee on how close these bounds are to the true maximum. In this paper we investigate the parameterised complexity of determining the maximum modularity with respect to various standard structural parameterisations of the input graph G. We show that the problem belongs to FPT when parameterised by the size of a minimum vertex cover for G, and is solvable in polynomial time whenever the treewidth or max leaf number of G is bounded by some fixed constant; we also obtain an FPT algorithm, parameterised by treewidth, to compute any constant-factor approximation to the maximum modularity. On the other hand we show that the problem is W[1]-hard (and hence unlikely to admit an FPT algorithm) when parameterised simultaneously by pathwidth and the size of a minimum feedback vertex set.
  • 关键词:modularity; community detection; integer quadratic programming; vertex cover; pathwidth
国家哲学社会科学文献中心版权所有