首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Co-administration of amygdalin and deoxynivalenol disrupted regulatory proteins linked to proliferation of porcine ovarian cells in vitro
  • 本地全文:下载
  • 作者:Marek Halenár ; Marína Medveďová ; Simona Baldovská
  • 期刊名称:Potravinarstvo : Scientific Journal for Food Industry
  • 印刷版ISSN:1338-0230
  • 电子版ISSN:1337-0960
  • 出版年度:2017
  • 卷号:11
  • 期号:1
  • 页码:503-509
  • DOI:10.5219/791
  • 语种:English
  • 出版社:Association HACCP Consulting
  • 摘要:Deoxynivalenol (DON) represents one of the most prevalent trichothecene mycotoxin produced by Fusarium species, causing economic and health impacts. On the other hand, amygdalin has been demonstrated to possess both prophylactic and curative properties, thus it has been used as a traditional drug because of its wide range of medicinal benefits, including curing or preventing cancer, relieving fever, suppressing cough, and quenching thirst. The aim of this in vitro study was to evaluate potential effects of natural product amygdalin combined with mycotoxin deoxynivalenol (DON) on the key regulators of cell proliferation and apoptosis in porcine ovarian granulosa cells. Ovarian granulosa cells were incubated for 24h with amygdalin (1, 10, 100, 1000, 10 000 μg.mL-1) combined with deoxynivalenol (1 μg.mL-1), while the control group remained untreated. The presence of proliferative (cyclin B1, PCNA) and apoptotic markers (caspase-3) in porcine ovarian granulosa cells after amygdalin treatment (1, 10, 100, 1000, 10 000 μg.mL-1) combined with deoxynivalneol (1 μg.mL-1) was detected by immunocytochemistry. The presence of proliferative (cyclin B1, PCNA) and apoptotic markers (caspase-3) in porcine ovarian granulosa cells was detected by immunocytochemistry. Co-administration of amygdalin plus DON significantly ( p < 0.05) increased the number of granulosa cells containing cyclin B1 and PCNA at all tested concetrations, when compared to control. However, percentage of granulosa cells containing major apoptotic marker caspase-3 did not differ after co-administration of amygdalin and DON. In summary, results form this in vitro study indicate that co-exposure of amygdalin and deoxynivalenol may act to stimulate proliferation-associated peptides in porcine ovarian granulosa cells, and thus alter cell proliferation and normal follicular development.
  • 其他摘要:Deoxynivalenol (DON) represents one of the most prevalent trichothecene mycotoxin produced by Fusarium species, causing economic and health impacts. On the other hand, amygdalin has been demonstrated to possess both prophylactic and curative properties, thus it has been used as a traditional drug because of its wide range of medicinal benefits, including curing or preventing cancer, relieving fever, suppressing cough, and quenching thirst. The aim of this in vitro study was to evaluate potential effects of natural product amygdalin combined with mycotoxin deoxynivalenol (DON) on the key regulators of cell proliferation and apoptosis in porcine ovarian granulosa cells. Ovarian granulosa cells were incubated for 24h with amygdalin (1, 10, 100, 1000, 10 000 μg.mL-1) combined with deoxynivalenol (1 μg.mL-1), while the control group remained untreated. The presence of proliferative (cyclin B1, PCNA) and apoptotic markers (caspase-3) in porcine ovarian granulosa cells after amygdalin treatment (1, 10, 100, 1000, 10 000 μg.mL-1) combined with deoxynivalneol (1 μg.mL-1) was detected by immunocytochemistry. The presence of proliferative (cyclin B1, PCNA) and apoptotic markers (caspase-3) in porcine ovarian granulosa cells was detected by immunocytochemistry. Co-administration of amygdalin plus DON significantly (p <0.05) increased the number of granulosa cells containing cyclin B1 and PCNA at all tested concetrations, when compared to control. However, percentage of granulosa cells containing major apoptotic marker caspase-3 did not differ after co-administration of amygdalin and DON. In summary, results form this in vitro study indicate that co-exposure of amygdalin and deoxynivalenol may act to stimulate proliferation-associated peptides in porcine ovarian granulosa cells, and thus alter cell proliferation and normal follicular development.
  • 关键词:amygdalin; deoxynivalenol; ovarian cell; proliferation; apoptosis
  • 其他关键词:amygdalin;deoxynivalenol;ovarian cell;proliferation;apoptosis
国家哲学社会科学文献中心版权所有