期刊名称:Potravinarstvo : Scientific Journal for Food Industry
印刷版ISSN:1338-0230
电子版ISSN:1337-0960
出版年度:2017
卷号:11
期号:1
页码:510-516
DOI:10.5219/796
语种:English
出版社:Association HACCP Consulting
摘要:In general, there are four basic types of tea: green (not fermented), black (fermented), oolong and white tea (partially fermented). The differences among these types are in the processing technology, which is largely reflected in their chemical composition. The most influential factor that significantly affects the quality and quantity of substances (biologically active) is the processing temperature, which causes changes in the composition (isomerization and/or transformation). The present paper focuses on monitoring content of three methylxanthines - alkaloids (caffeine, theophylline and theobromine), and seven flavan-3-ols - catechins ((+)-catechin (C), (-)-catechin-3-gallate (C-3-G), (-)-epicatechin (EC), (-)-epicatechin-3-gallate (EC-3-G), (-)-epigallocatechin-3-gallate (EGC-3-G), (-)-gallocatechin (GC) and (-)-gallocatechin-3-gallate (GC 3-G)), which are characteristic for tea. Attention was also given to the assessment of selected antioxidant parameters using spectrophotometric procedures (ABTS - radical cation decolorization assay and Phosphomolybdenum reducing antioxidant power assay) in relation to the determined substances using RP-HPLC/DAD analysis. Based on the results obtained, it can be concluded that a type of tea clearly affects the quality and quantity of the substances that have a positive impact on the consumer's health, significantly reflected in the levels of antioxidant active substances determined by the spectrophotometric procedures. The highest content of methylxanthin, catechins, polyphenols and antioxidant substances was recorded in the green tea sample GT3. The highest content of flavonoids and phenolic acids was recorded in the Pu-erh tea sample PT 5.
其他摘要:In general, there are four basic types of tea: green (not fermented), black (fermented), oolong and white tea (partially fermented). The differences among these types are in the processing technology, which is largely reflected in their chemical composition. The most influential factor that significantly affects the quality and quantity of substances (biologically active) is the processing temperature, which causes changes in the composition (isomerization and/or transformation). The present paper focuses on monitoring content of three methylxanthines - alkaloids (caffeine, theophylline and theobromine), and seven flavan-3-ols - catechins ((+)-catechin (C), (-)-catechin-3-gallate (C-3-G), (-)-epicatechin (EC), (-)-epicatechin-3-gallate (EC-3-G), (-)-epigallocatechin-3-gallate (EGC-3-G), (-)-gallocatechin (GC) and (-)-gallocatechin-3-gallate (GC 3-G)), which are characteristic for tea. Attention was also given to the assessment of selected antioxidant parameters using spectrophotometric procedures (ABTS - radical cation decolorization assay and Phosphomolybdenum reducing antioxidant power assay) in relation to the determined substances using RP-HPLC/DAD analysis. Based on the results obtained, it can be concluded that a type of tea clearly affects the quality and quantity of the substances that have a positive impact on the consumer's health, significantly reflected in the levels of antioxidant active substances determined by the spectrophotometric procedures. The highest content of methylxanthin, catechins, polyphenols and antioxidant substances was recorded in the green tea sample GT3. The highest content of flavonoids and phenolic acids was recorded in the Pu-erh tea sample PT 5.