首页    期刊浏览 2025年06月29日 星期日
登录注册

文章基本信息

  • 标题:Representation by several orthogonal polynomials for sums of finite products of Chebyshev polynomials of the first, third and fourth kinds
  • 本地全文:下载
  • 作者:Taekyun Kim ; Dae San Kim ; Dmitry V. Dolgy
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2019
  • 卷号:2019
  • 期号:1
  • 页码:1-16
  • DOI:10.1186/s13662-019-2058-8
  • 出版社:Hindawi Publishing Corporation
  • 摘要:The classical linearization problem concerns with determining the coefficients in the expansion of the product of two polynomials in terms of any given sequence of polynomials. As a generalization of this, we consider here sums of finite products of Chebyshev polynomials of the first, third, and fourth kinds, which are different from the ones previously studied. We represent each of them as linear combinations of Hermite, extended Laguerre, Legendre, Gegenbauer, and Jacobi polynomials. Here, the coefficients involve some terminating hypergeometric functions F 1 2 ${}_,F_)$ , F 2 2 ${}_,F_,$ , and F 1 1 ${}_)F_)$ . These representations are obtained by explicit computations.
  • 关键词:Sums of finite products ; Chebyshev polynomials ; Hermite polynomial ; Extended Laguerre polynomial ; Legendre polynomial ; Gegenbauer polynomial ; Jacobi polynomial
国家哲学社会科学文献中心版权所有