摘要:Background: IntelliCare is a mental health app platform with 14 apps that are elemental , simple and brief to use, and eclectic . Although a variety of apps may improve engagement, leading to better outcomes, they may require navigation aids such as recommender systems that can quickly direct a person to a useful app. Objective: As the first step toward developing navigation and recommender tools, this study explored app-use patterns across the IntelliCare platform and their relationship with depression and anxiety outcomes. Methods: This is a secondary analysis of the IntelliCare Field Trial, which recruited people with depression or anxiety. Participants of the trial received 8 weeks of coaching, primarily by text, and weekly random recommendations for apps. App-use metrics included frequency and lifetime use. Depression and anxiety, measured using the Patient Health Questionnaire-9 and Generalized Anxiety Disorder-7, respectively, were assessed at baseline and end of treatment. Cluster analysis was utilized to determine patterns of app use; ordinal logistic regression models and log-rank tests were used to determine if these use metrics alone, or in combination, predicted improvement or remission in depression or anxiety. Results: The analysis included 96 people who generally followed recommendations to download and try new apps each week. Apps were clustered into 5 groups: Thinking (apps that targeted or relied on thinking), Calming (relaxation and insomnia), Checklists (apps that used checklists), Activity (behavioral activation and activity), and Other. Both overall frequency of use and lifetime use predicted response for depression and anxiety. The Thinking, Calming, and Checklist clusters were associated with improvement in depression and anxiety, and the Activity cluster was associated with improvement in Anxiety only. However, the use of clusters was less strongly associated with improvement than individual app use. Conclusions: Participants in the field trial remained engaged with a suite of apps for the full 8 weeks of the trial. App-use patterns did fall into clusters, suggesting that some knowledge about the use of one app may be useful in selecting another app that the person is more likely to use and may help suggest apps based on baseline symptomology and personal preference.