首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Evolution of Genomic Base Composition: From Single Cell Microbes to Multicellular Animals
  • 本地全文:下载
  • 作者:Jon Bohlin ; John H.-O. Pettersson
  • 期刊名称:Computational and Structural Biotechnology Journal
  • 印刷版ISSN:2001-0370
  • 出版年度:2019
  • 卷号:17
  • 页码:362-370
  • DOI:10.1016/j.csbj.2019.03.001
  • 出版社:Computational and Structural Biotechnology Journal
  • 摘要:Whole genome sequencing (WGS) of thousands of microbial genomes has provided considerable insight into evolutionary mechanisms in the microbial world. While substantially fewer eukaryotic genomes are available for analyses the number is rapidly increasing. This mini-review summarizes broadly evolutionary dynamics of base composition in the different domains of life from the perspective of prokaryotes. Common and different evolutionary mechanisms influencing genomic base composition in eukaryotes and prokaryotes are discussed. The conclusion from the data currently available suggests that while there are similarities there are also striking differences in how genomic base composition has evolved within prokaryotes and eukaryotes. For instance, homologous recombination appears to increase GC content locally in eukaryotes due to a non-selective process termed GC-biased gene conversion (gBGC). For prokaryotes on the other hand, increase in genomic GC content seems to be driven by the environment and selection. We find that similar phenomena observed for some organisms in each respective domain may be caused by very different mechanisms: while gBGC and recombination rates appear to explain the negative correlation between GC3 (GC content based on the third codon nucleotides) and genome size in some eukaryotes uptake of AT rich DNA sequences is the main reason for a similar negative correlation observed in prokaryotes. We provide further examples that indicate that base composition in prokaryotes and eukaryotes have evolved under very different constraints.
国家哲学社会科学文献中心版权所有