首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Computational approaches in target identification and drug discovery
  • 本地全文:下载
  • 作者:Theodora Katsila ; Georgios A. Spyroulias ; George P. Patrinos
  • 期刊名称:Computational and Structural Biotechnology Journal
  • 印刷版ISSN:2001-0370
  • 出版年度:2016
  • 卷号:14
  • 页码:177-184
  • DOI:10.1016/j.csbj.2016.04.004
  • 语种:
  • 出版社:Computational and Structural Biotechnology Journal
  • 摘要:In the big data era, voluminous datasets are routinely acquired, stored and analyzed with the aim to inform biomedical discoveries and validate hypotheses. No doubt, data volume and diversity have dramatically increased by the advent of new technologies and open data initiatives. Big data are used across the whole drug discovery pipeline from target identification and mechanism of action to identification of novel leads and drug candidates. Such methods are depicted and discussed, with the aim to provide a general view of computational tools and databases available. We feel that big data leveraging needs to be cost-effective and focus on personalized medicine. For this, we propose the interplay of information technologies and (chemo)informatic tools on the basis of their synergy.
  • 关键词:Data integration ; Information technologies ; Target identification ; Computer-aided drug discovery
国家哲学社会科学文献中心版权所有