首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Computing and Explaining Query Answers over Inconsistent DL-Lite Knowledge Bases
  • 本地全文:下载
  • 作者:Meghyn Bienvenu ; Camille Bourgaux ; François Goasdoué
  • 期刊名称:Journal of Artificial Intelligence Research
  • 印刷版ISSN:1076-9757
  • 出版年度:2019
  • 卷号:64
  • 页码:563-644
  • DOI:10.1613/jair.1.11395
  • 出版社:American Association of Artificial
  • 摘要:Several inconsistency-tolerant semantics have been introduced for querying inconsistent description logic knowledge bases. The first contribution of this paper is a practical approach for computing the query answers under three well-known such semantics, namely the AR, IAR and brave semantics, in the lightweight description logic DL-LiteR. We show that query answering under the intractable AR semantics can be performed efficiently by using IAR and brave semantics as tractable approximations and encoding the AR entailment problem as a propositional satisfiability (SAT) problem. The second issue tackled in this work is explaining why a tuple is a (non-)answer to a query under these semantics. We define explanations for positive and negative answers under the brave, AR and IAR semantics. We then study the computational properties of explanations in DL-LiteR. For each type of explanation, we analyze the data complexity of recognizing (preferred) explanations and deciding if a given assertion is relevant or necessary. We establish tight connections between intractable explanation problems and variants of SAT, enabling us to generate explanations by exploiting solvers for Boolean satisfaction and optimization problems. Finally, we empirically study the efficiency of our query answering and explanation framework using a benchmark we built upon the well-established LUBM benchmark.
国家哲学社会科学文献中心版权所有