首页    期刊浏览 2024年07月18日 星期四
登录注册

文章基本信息

  • 标题:Pretreatment with a CRF antagonist amplifies feeding inhibition induced by fourth ventricular cocaine- and amphetamine-regulated transcript peptide
  • 本地全文:下载
  • 作者:Ulrika Smedh ; Karen A. Scott ; Timothy H. Moran
  • 期刊名称:BMC Neuroscience
  • 印刷版ISSN:1471-2202
  • 电子版ISSN:1471-2202
  • 出版年度:2019
  • 卷号:20
  • 期号:1
  • 页码:1-7
  • DOI:10.1186/s12868-019-0494-8
  • 出版社:BioMed Central
  • 摘要:Pre-treatment with the corticotropin-releasing factor antagonist α-helical CRF9-41 prevents inhibition of gastric emptying by cocaine-and amphetamine-regulated transcript peptide at a dorsal hindbrain level, but its inhibition of sucrose intake is not affected. This is suggestive of separable underlying mechanisms of action in the caudal brainstem for cocaine-and amphetamine-regulated transcript peptide with regard to food intake and gastrointestinal functions. Here we further examine cocaine-and amphetamine-regulated transcript peptide—corticotropin-releasing factor receptor interactions in caudal brainstem controls of solid food intake. Injections of combinations of vehicle, cocaine-and amphetamine-regulated transcript peptide (0.5 μg or 1 μg) or α-helical CRF9-41 were given into the fourth cerebral ventricle of rats. Nocturnal solid food intake was recorded over 22 h. Pre-treatment with α-helical CRF9-41 into the fourth ventricle significantly increased the responsivity to cocaine-and amphetamine-regulated transcript peptide on hypophagia. In a separate control experiment, α-helical CRF9-41 pre-treatment blocked CRF-induced food intake inhibition indicative of its antagonistic effectiveness. We conclude that an endogenous Corticotropin-releasing factor agonist may modulate suppression of food intake caused by cocaine-and amphetamine-regulated transcript peptide at a dorsal hindbrain level in the absence of stress. A potential caudal brainstem mechanism whereby cocaine-and amphetamine-regulated transcript peptide effects on food intake is attenuated via corticotropin-releasing factor receptor activity causing tonic inhibition, is suggested.
  • 关键词:Rat ; Dorsal hindbrain ; Food intake
国家哲学社会科学文献中心版权所有