首页    期刊浏览 2025年07月01日 星期二
登录注册

文章基本信息

  • 标题:Existence and multiplicity of solutions for Klein–Gordon–Maxwell systems with sign-changing potentials
  • 本地全文:下载
  • 作者:Chongqing Wei ; Anran Li
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2019
  • 卷号:2019
  • 期号:1
  • 页码:1-11
  • DOI:10.1186/s13662-019-2020-9
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In this paper, we study the following nonlinear Klein–Gordon–Maxwell system: { − Δ u + V ( x ) u − ( 2 ω + ϕ ) ϕ u = f ( x , u ) + λ h ( x ) u q − 2 u , x ∈ R 3 , Δ ϕ = ( ω + ϕ ) u 2 , x ∈ R 3 , ( P λ ) $$ \textstyle\begin{cases} -\Delta u+ V(x)u-(2\omega +\phi )\phi u = f(x,u)+\lambda h(x) \vert u \vert ^{q-2}u, & x\in \mathbb{R}^",\\ \Delta \phi = (\omega +\phi )u^,, & x\in \mathbb{R}^", \end{cases}\displaystyle \quad (\mathrm{P_{\lambda }}) $$ where ω and λ are positive constants, V is a continuous function with negative infimum, q ∈ ( 1 , 2 ) $q\in (1,2)$ , h ∈ L 2 2 − q ( R 3 ) $h\in L^{\frac,{2-q}}(\mathbb{R}^")$ is a positive potential function. Under the classic Ambrosetti–Rabinowitz condition, nontrivial solutions are obtained via the symmetric mountain pass theorem and the mountain pass theorem. In our paper, the nonlinearity F can also change sign and does not need to satisfy any 4-superlinear condition. We extend and improve some existing results to some extent.
  • 关键词:Klein–Gordon–Maxwell system ; Symmetric Mountain Pass theorem ; Mountain Pass theorem ; Variational methods ; Nontrivial solutions
国家哲学社会科学文献中心版权所有