首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Conservation laws, soliton-like and stability analysis for the time fractional dispersive long-wave equation
  • 本地全文:下载
  • 作者:Abdullahi Yusuf ; Mustafa Inc ; Aliyu Isa Aliyu
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2018
  • 卷号:2018
  • 期号:1
  • 页码:319
  • DOI:10.1186/s13662-018-1780-y
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In this manuscript we investigate the time fractional dispersive long wave equation (DLWE) and its corresponding integer order DLWE. The symmetry properties and reductions are derived. We construct the conservation laws (Cls) with Riemann–Liouville (RL) for the time fractional DLWE via a new conservation theorem. The conformable derivative is employed to establish soliton-like solutions for the governing equation by using the generalized projective method (GPM). Moreover, the Cls via the multiplier technique and the stability analysis via the concept of linear stability analysis for the integer order DLWE are established. Some graphical features are presented to explain the physical mechanism of the solutions.
  • 关键词:Time fractional PDEs ; RL fractional derivative ; Cls ; Solitons ; Stability analysis
国家哲学社会科学文献中心版权所有