首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:On ideal convergence Fibonacci difference sequence spaces
  • 本地全文:下载
  • 作者:Vakeel A. Khan ; Rami K. A. Rababah ; Kamal M. A. S. Alshlool
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2018
  • 卷号:2018
  • 期号:1
  • 页码:199
  • DOI:10.1186/s13662-018-1639-2
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:The Fibonacci sequence was firstly used in the theory of sequence spaces by Kara and Başarir (Casp. J. Math. Sci. 1(1):43–47, 2012). Afterward, Kara (J. Inequal. Appl. 2013(1):38, 2013) defined the Fibonacci difference matrix F̂ by using the Fibonacci sequence ( f n ) $(f_{n})$ for n ∈ { 0 , 1 , … } $n\in{\{0, 1, \ldots\}}$ and introduced new sequence spaces related to the matrix domain of F̂. In this paper, by using the Fibonacci difference matrix F̂ defined by the Fibonacci sequence and the notion of ideal convergence, we introduce the Fibonacci difference sequence spaces c 0 I ( F ˆ ) $c^{I}_((\hat {F})$ , c I ( F ˆ ) $c^{I}(\hat{F})$ , and ℓ ∞ I ( F ˆ ) $\ell^{I}_{\infty}(\hat{F})$ . Further, we study some inclusion relations concerning these spaces. In addition, we discuss some properties on these spaces such as monotonicity and solidity.
  • 关键词:Fibonacci difference matrix ; Fibonacci I -convergence ; Fibonacci I -Cauchy ; Fibonacci I -bounded ; Lipschitz function
国家哲学社会科学文献中心版权所有