摘要:In this paper, we prove the following result: Let f be a nonconstant meromorphic function of finite order, p be a nonconstant polynomial, and c be a nonzero constant. If f, Δ c f $\Delta _{c}f$ , and Δ c n f $\Delta_{c}^{n}f$ ( n ≥ 2 $n\ge 2$ ) share ∞ and p CM, then f ≡ Δ c f $f\equiv \Delta_{c}f$ . Our result provides a difference analogue of the result of Chang and Fang in 2004 (Complex Var. Theory Appl. 49(12):871–895, 2004).