首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Optimal error estimate of the Legendre spectral approximation for space-fractional reaction–advection–diffusion equation
  • 本地全文:下载
  • 作者:Wenping Chen ; Shujuan Lü ; Hu Chen
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2018
  • 卷号:2018
  • 期号:1
  • 页码:140
  • DOI:10.1186/s13662-018-1572-4
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In this paper, we consider the space-fractional reaction–advection–diffusion equation with fractional diffusion and integer advection terms. By treating the first-order integer derivative as the composition of two Riemann–Liouville fractional derivative operators, we construct a fully discrete scheme by Legendre spectral method in a spatial and Crank–Nicolson scheme in temporal discretizations. Using thee right Riemann–Liouville fractional derivative, a novel duality argument is established, the optimal error estimate is proved to be O ( τ 2 + N − m ) $O( au^,+N^{-m})$ in L 2 $L^,$ -norm. Numerical tests are carried out to support the theoretical results, and the coefficient matrix with respect to first-order derivative obtained here is compared with that of traditional Legendre spectral method.
  • 关键词:Space-fractional reaction–advection–diffusion equation ; Legendre spectral method ; Crank-Nicolson scheme ; Stability ; Optimal error estimate
国家哲学社会科学文献中心版权所有