首页    期刊浏览 2025年05月23日 星期五
登录注册

文章基本信息

  • 标题:Finite difference scheme for multi-term variable-order fractional diffusion equation
  • 本地全文:下载
  • 作者:Tao Xu ; Shujuan Lü ; Wenping Chen
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2018
  • 卷号:2018
  • 期号:1
  • 页码:103
  • DOI:10.1186/s13662-018-1544-8
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In this paper, we consider a multi-term variable-order fractional diffusion equation on a finite domain, which involves the Caputo variable-order time fractional derivative of order α ( x , t ) ∈ ( 0 , 1 ) $\alpha(x,t) \in(0,1) $ and the Riesz variable-order space fractional derivatives of order β ( x , t ) ∈ ( 0 , 1 ) $\beta(x,t) \in (0,1)$ , γ ( x , t ) ∈ ( 1 , 2 ) $\gamma(x,t)\in(1,2)$ . Approximating the temporal direction derivative by L1-algorithm and the spatial direction derivative by the standard and shifted Grünwald method, respectively, a characteristic finite difference scheme is proposed. The stability and convergence of the difference schemes are analyzed via mathematical induction. Some numerical experiments are provided to show the efficiency of the proposed difference schemes.
  • 关键词:Multi-term fractional diffusion equation ; Variable-order fractional derivatives ; Difference scheme ; Stability ; Convergence
国家哲学社会科学文献中心版权所有