摘要:In this paper, we investigate the existence of local center stable manifolds of Langevin differential equations with two Caputo fractional derivatives in the two-dimensional case. We adopt the idea of the existence of a local center stable manifold by considering a fixed point of a suitable Lyapunov-Perron operator. A local center stable manifold theorem is given after deriving some necessary integral estimates involving well-known Mittag-Leffler functions.