首页    期刊浏览 2025年02月21日 星期五
登录注册

文章基本信息

  • 标题:Existence of solution for stochastic differential equations driven by G -Lévy process with discontinuous coefficients
  • 本地全文:下载
  • 作者:Bingjun Wang ; Mingxia Yuan
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2017
  • 卷号:2017
  • 期号:1
  • 页码:188
  • DOI:10.1186/s13662-017-1242-y
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:The existence theory for the vector-valued stochastic differential equations driven by G-Brownian motion and pure jump G-Lévy process (G-SDEs) of the type d Y t = f ( t , Y t ) d t + g j , k ( t , Y t ) d 〈 B j , B k 〉 t + σ i ( t , Y t ) d B t i + ∫ R 0 d K ( t , Y t , z ) L ( d t , d z ) $dY_{t}=f(t,Y_{t})\, dt+g_{j,k}(t,Y_{t})\, d\langle B^{j},B^{k}\rangle _{t}+\sigma_{i}(t,Y_{t}) \, dB^{i}_{t}+\int _{R_(^{d}}K(t,Y_{t},z)L(dt,dz)$ , t ∈ [ 0 , T ] $t\in[0,T]$ , with first two and last discontinuous coefficients, is established. It is shown that the G-SDEs have more than one solution if the coefficients f, g, K are discontinuous functions. The upper and lower solution method is used.
  • 关键词:stochastic differential equations ; G -Lévy process ; upper and lower solution ; discontinuous coefficients
国家哲学社会科学文献中心版权所有