首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Semi-nonoscillation intervals in the analysis of sign constancy of Green’s functions of Dirichlet, Neumann and focal impulsive problems
  • 本地全文:下载
  • 作者:Alexander Domoshnitsky ; Guy Landsman
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2017
  • 卷号:2017
  • 期号:1
  • 页码:81
  • DOI:10.1186/s13662-017-1134-1
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:We consider the following second order differential equation with delay: { ( L x ) ( t ) ≡ x ″ ( t ) + ∑ j = 1 p a j ( t ) x ′ ( t − τ j ( t ) ) + ∑ j = 1 p b j ( t ) x ( t − θ j ( t ) ) = f ( t ) , t ∈ [ 0 , ω ] , x ( t k ) = γ k x ( t k − 0 ) , x ′ ( t k ) = δ k x ′ ( t k − 0 ) , k = 1 , 2 , … , r . $$\textstyle\begin{cases} (Lx)(t)\equiv{x''(t)+\sum_{j=1}^{p} {a_{j}(t)x'(t-\tau_{j}(t))}+\sum_{j=1}^{p} {b_{j}(t)x(t-\theta_{j}(t))}}=f(t), & t\in[0,\omega], \\ x(t_{k})=\gamma_{k}x(t_{k}-0), x'(t_{k})=\delta_{k}x'(t_{k}-0), & k=1,2,\ldots,r. \end{cases} $$ In this paper we use focal problems to analyze the sign constancy of Green’s functions.
  • 关键词:impulsive equations ; Green’s functions ; positivity/negativity of Green’s functions ; boundary value problem ; second order
国家哲学社会科学文献中心版权所有