首页    期刊浏览 2025年07月02日 星期三
登录注册

文章基本信息

  • 标题:Infinitely many solutions for fractional Laplacian problems with local growth conditions
  • 本地全文:下载
  • 作者:Anran Li ; Chongqing Wei
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2016
  • 卷号:2016
  • 期号:1
  • 页码:244
  • DOI:10.1186/s13662-016-0963-7
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In this paper, we deal with the fractional Laplacian equations ( P ) { ( − Δ ) s u = f ( x , u ) , x ∈ Ω , u ( x ) = 0 , x ∈ R N ∖ Ω , $$(\mathrm{P})\quad \left \{ \textstyle\begin{array}{@{}l@{\quad}l} (-\Delta)^{s} u = f(x,u), & x\in \Omega,\\ u(x)= 0, & x\in \mathbb{R}^{N}\backslash\Omega, \end{array}\displaystyle \right . $$ where 0 2 s $N\in\mathbb{N}, N>2s$ , Ω ⊂ R N $\Omega\subset \mathbb{R}^{N}$ is a bounded domain with smooth boundary. Under local growth conditions of f ( x , t ) $f(x,t)$ , infinitely many solutions for problem (P) are obtained via variational methods.
  • 关键词:fractional Laplacian equation ; local growth condition ; Clark’s theorem ; variational methods
国家哲学社会科学文献中心版权所有