首页    期刊浏览 2025年12月20日 星期六
登录注册

文章基本信息

  • 标题:Nonlocal type asymptotic behavior for solutions of second order difference equations
  • 本地全文:下载
  • 作者:Cristóbal González ; Antonio Jiménez-Melado
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2016
  • 卷号:2016
  • 期号:1
  • 页码:237
  • DOI:10.1186/s13662-016-0962-8
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In this work we consider a discrete nonlocal problem of the following type: { Δ ( q Δ x ) ( n ) + f ( n + 1 , x ( n + 1 ) ) = 0 , x ( ∞ ) = g ( x ) , $$\textstyle\begin{cases} \Delta ( q \Delta \mathbf {x} )(n) + f (n+1, \mathbf {x}(n+1) ) =0, \\ \mathbf {x}(\infty) = g(\mathbf {x}), \end{cases} $$ in the context of an arbitrary Banach space ( X , ∥ ⋅ ∥ X ) $(X,\lVert\cdot\rVert _{X})$ , and we give sufficient conditions that ensure the existence of solutions to it. In order to present our result, we shall need to study conditions that ensure the existence of solutions with a nonlocal asymptotic behavior for the following equation: x ( n ) = g ( x ) − ∑ k = n + 1 ∞ ∑ j = n k − 1 1 q ( j ) f ( k , x ( k ) ) . $$\mathbf {x}(n) = g(\mathbf {x}) - \sum_{k=n+1}^{\infty}\sum_{j=n}^{k-1} \frac){q(j)} f \bigl(k, \mathbf {x}(k) \bigr). $$
  • 关键词:nonlocal problem ; asymptotic behavior ; second order difference equation ; Leray-Schauder type fixed point theorem
国家哲学社会科学文献中心版权所有