摘要:In this article, the authors study the existence of positive periodic solutions for a prescribed mean curvature p-Laplacian equation with a singularity of repulsive type and a time-varying delay ( φ p ( x ′ ( t ) 1 + ( x ′ ( t ) ) 2 ) ) ′ + β x ′ ( t ) + g ( t , x ( t ) , x ( t − τ ( t ) ) ) = p ( t ) , $$\biggl(\varphi_{p} \biggl(\frac{x'(t)}{\sqrt{1+(x'(t))^,}} \biggr) \biggr)'+\beta x'(t)+g \bigl(t, x(t),x \bigl(t-\tau(t) \bigr) \bigr)=p(t), $$ where g → − ∞ $g\rightarrow-\infty$ when x → 0 + $x\rightarrow0^{+}$ . The existence of positive periodic solutions conditions is devised by using the coincidence degree theory and some analysis methods. A numerical example demonstrates the validity of the main results.
关键词:prescribed mean curvature equation ; coincidence degree theory ; periodic solutions ; singularity ; delay