首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Hahn difference equations in Banach algebras
  • 本地全文:下载
  • 作者:Alaa E Hamza ; Marwa M Abdelkhaliq
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2016
  • 卷号:2016
  • 期号:1
  • 页码:161
  • DOI:10.1186/s13662-016-0886-3
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Hahn introduced the difference operator D q , ω f ( t ) = ( f ( q t + ω ) − f ( t ) ) / ( t ( q − 1 ) + ω ) $D_{q,\omega}f(t)= (f(qt+\omega)-f(t) )/ (t(q-1)+\omega )$ in 1949, where 0 0 $\omega> 0$ are fixed real numbers. This operator extends the classical difference operator ▵ ω f ( t ) = ( f ( t + ω ) − f ( t ) ) / ω $\vartriangle_{\omega}f(t)= (f(t+\omega)-f(t) )/\omega$ as well as the Jackson q-difference operator D q f ( t ) = ( f ( q t ) − f ( t ) ) / ( t ( q − 1 ) ) $D_{q}f(t)= (f(qt)-f(t) )/ (t(q-1) )$ . In this paper, we study the theory of abstract linear Hahn difference equations of the form A 0 ( t ) D q , ω n x ( t ) + A 1 ( t ) D q , ω n − 1 x ( t ) + ⋯ + A n ( t ) x ( t ) = B ( t ) , $$A_((t)D_{q,\omega}^{n}x(t)+A_)(t)D_{q,\omega}^{n-1}x(t)+ \cdots+ A_{n}(t)x(t)=B(t), $$ where B and A i $A_{i}$ are mappings from an interval I into a Banach algebra X $\mathbb{X}$ , i = 1 , … , n $i=1,\ldots,n$ . We define the abstract exponential functions and the abstract trigonometric (hyperbolic) functions. We prove they are solutions of first and second order Hahn difference equations, respectively. Also, we obtain an integral equation corresponding to the second order linear Hahn difference equations which is known as the Volterra integral equation. Finally, we present the analogs of the variation of parameter technique and the annihilator method for the non-homogeneous case.
  • 关键词:Hahn difference operator ; Jackson q -difference operator
国家哲学社会科学文献中心版权所有