首页    期刊浏览 2025年08月18日 星期一
登录注册

文章基本信息

  • 标题:On a highly accurate approximation of the first and pure second derivatives of the Laplace equation in a rectangular parallelpiped
  • 本地全文:下载
  • 作者:Adiguzel A Dosiyev ; Hamid Mir-Mohammad Sadeghi
  • 期刊名称:Advances in Difference Equations
  • 印刷版ISSN:1687-1839
  • 电子版ISSN:1687-1847
  • 出版年度:2016
  • 卷号:2016
  • 期号:1
  • 页码:145
  • DOI:10.1186/s13662-016-0868-5
  • 语种:English
  • 出版社:Hindawi Publishing Corporation
  • 摘要:We propose and justify difference schemes for the approximation of the first and pure second derivatives of a solution of the Dirichlet problem in a rectangular parallelepiped. The boundary values on the faces of the parallelepiped are supposed to have six derivatives satisfying the Hölder condition, to be continuous on the edges, and to have second- and fourth-order derivatives satisfying the compatibility conditions resulting from the Laplace equation. We prove that the solutions of the proposed difference schemes converge uniformly on the cubic grid of order O ( h 4 ) $O(h^{4})$ , where h is a grid step. Numerical experiments are presented to illustrate and support the analysis made.
  • 关键词:finite difference method ; approximation of derivatives ; uniform error ; Laplace equation
国家哲学社会科学文献中心版权所有